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1. Introduction

"Many of the inventory models which are used in practice rely upon knowing

the probability distribution of demand over a leadtime. The common assumption

is that this distribution is normal. However, in certain circumstances, the

normality assumption may be inappropriate. The purpose of this paper is to

derive the exact distribution of leadtime demand under the following assumptions:

customer requisitions occur according to a stationary Poisson process, requisition

sizes follow a logarithmic distribution and leadtime is a random variable with

the gamma distribution. In addition to deriving the exact distribution of lead-

time demand, we compare our results to actual operational data and discuss a

variety of approximations.

A number of researchers have considered the problem of determining inventory

operating policies when requisition size exceeds one. For example, Hausman [6]

extends Hadley and Whitin's [5] heuristic while Archibald and Silver [1] derive

optimal (s, S) policies. These studies differ from ours in two ways. First, in

every case leadtime was assumed to be deterministic. Second, they focus primarily

on describing optimal and suboptimal ordering policies. Our interest is in a de-

tailed examination of the distribution of demand over leadtime.

2. The Logarithmic Distribution

The logarithmic (or log series) distribution was originally derived by

Fisher et. al. [4] and has been discussed by Sherbrooke [111 in connection with

inventory problems. It can be derived as a limiting case of the negative bi-

nomial distribution and has the form

(1) f(x) = ox  for x = 1, 2, ... I.
-x ln(1-O) aL.I
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where 0 < 0 < 1. Chakrauarti et. al. [31 recommend the method of moments be

used to estimate 0. It is easy to show that

* (2) E(x) = 0
-(1-0)ln(1-0)

which means that an estimator for 0, say 0, solves the trancendental equation

(3) X =0_
: -(1-0)In(1-0)

where X is the observed sample mean. Since the right hand side is an increasing

function of 0, this equation can be solved very efficiently by interval bisection.

We have collected data describing the requisition size distribution for a

number of Air Force EOQ-type (i.e. consumable) items. For many of these items,

the logarithmic distribution appears to be a useful approximation to the observed

data. An example of a specific item is presented in Table 1. In this case,

the observed sample mean is 3.94, which results in 0 = .901. Notice the very

close agreement between the observed and the predicted cumulative distribution

functions for this item.

3. The LPG Distribution

Let us now assume that requisitions are generated by a Poisson process and

the requisition size has a logarithmic distribution. (That is, the demand pro-

cess is a compound Poisson process with logarithmic compounding distribution).

It is well known that the total number of units demanded in any fixed time, t,

say Z(t), has the negative binomial distribution. In particular, we obtain

(4) P{Z(t) - x} - (ct + x - 1)! (1-0) c t 0X  for x - 0, 1, 2,

x! (ct-l)!

where c - -X/ln(l-0) and A is the requisition arrival rate.

I
.. . . . . ..*
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Table 1. Comparison of observed frequencies and those predicted by logarithmic

distribution for a typical EOQ type item.

Number of Observed Theoretical Observed Theoretical
x Observations Frequency Frequency Cumulative Cumulative

1 93 .4247 .3896 .4247 .3896

2 31 .1416 .1755 .5663 .5651

3 13 10594 .1054 .6257 .6705

4 15 .0685 .0712 .6942 .7417

5 10 .0457 .0514 .7399 .7931

6 15 .0685 .0386 .8084 .8317

7 8 .0365 .0298 .8449 .8615

8 8 .0365 .0235 .8814 .8850

9 3 .0137 .0188 .8951 .9031

10 4 .0183 .0152 .9134 .9190

11 7 .0320 .0125 .9454 .9315

12 3 .0137 .0103 .9591 .9418

13 0 .0000 .0086 .9591 .9504

14 1 .0046 .0072 .9637 .9576

15 2 .0091 .0061 .9728 .9637

16 1 .0046 .0052 .9774 .9689

17 0 .0000 .0043 .9774 .9732

18 1 .0046 .0037 .9820 .9769

19 0 .0000 .0031 .9820 .9800

20 2 .0091 .0027 .9911 .9827

I5
25 2 .0091 .0008 1.0000 .9915

Il
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This result appears to be due to Quenouille [101. Baswell and Patil [21

give fifteen different derivations of the negative binomial distribution, thus

accounting for its power in describing many common phenomena.

Now let us assume that the procurement leadtime, T, is a continuous non-

negative random variable with probability density g(T). In general, the number

of units demanded in time T is a random variable with probability function h(x)

given by

(5) h(x) = f(XlT) g(T) di

0

where f(x1T) is the probability function of the number of units demanded in a

time T. Under our assumptions, f(xIT) has the negative binomial distribution.

Since cT is in general not an integer, we use the gamma function representation

for the factorials, so that

(6) h(x) = 0 r(cT + x)(l-0) CT g(T) dT.
x! 0 r(cT)

Using the fact that F(c) = (a-1) r (a-i) we have

X-I X k
(7) f(cT + x) = R (cT + j) E(cT) Sxk ,

r(cT) j=O k=l

where the coefficients Sxk are known as Stirling numbers of the first kind and

can be computed from the recursion

(8) Sxk Sx-l,k-_ + (x-l) Sx-l,k'

for k = 1, 2, ... , x and x = , 2,...,

with S -0 for all x.

Furthermore, from the definition of c,

(9) (I-0)cT - exp{cT In (1-0)) = e
- AT

so that we may now write

I
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(10) h(x) = 0x E ckSx f Tke-AT g() d.
x k=l

We now specialize to the case where g(i) has the gamma distribution with

parameters a and so that

I e for T > o.

Since leadtimes must be non-negative, the gamma distribution should provide

sufficient flexibility to model leadtime variability in many operating environ-

ments.

Using the fact that
[Cu

(12) f T k+a-1 e(A+ ) = r(k+o)
0 ka+

( +1)

and that, as above,

k
(13) (k+a) = S

r (a) j jl

we obtain the following as the probability function for the number of units

demanded in a leadtime:
x k

(14) hkx)= Ot 0 x k i-i I S for x = 1, 2, 3,

and h(o) a

We call this the LPG distribution (for Logarithmic-Poisson-Gamma). Its

four parameters are a, 8, 0 and X (0 and X determine c). An example of the LPG

distribution is presented in Table 2 for a 1, 8 = 1, 0 = .8 and A = 1.
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4. A Recursion for Integer a

For numeric calculations, we found the following recursion to be useful.

Let us assume that U is integer, and let C 1 = (/(X+'))"and C2 = /+ ).

Further, using (13) let us define

(15) T =C .x Ck s (x + k - )xk 1  2 x,k ( -i)!

Hence, h(x) may be computed as a sum of TXk:

(16) h(x) T
k1 x,k

Note that T = 0 since S =0
X'o Xo

and that

T x'x = C1  (0C 2) x (a + x W )

x -li)!

(17) = OC2  (a + x - 1) T

x

since S fi = 1. Using (8), we may now write Tx, k in terms of Txl,k;

specifically, we obtain:

(18) Txk = O (C2 (a + k - 1) Tx.l1 k1 + (x - 1) Tx.lk ]
x

Thus, h(x) may be evaluated using only Tx-l,k terms. This provides

significant reductions in computer memory and calculation requirements compared

to a direct evaluation of (14) for each x.

5. Approximations

Many inventory models require computing reorder points from fractiles of

the leadtime demand distribution. Finding exact fractiles of the LPG distri-

bution might be too demanding computationally for many real applications. In

!1
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'Fable 2. The L'G Distribution

Parameters a=l, =I, 0=.8, X=1.

x h(x) H(x)

0 .5000 .5000

1 .1243 .6243

2 .0806 .7049

3 .0589 .7638

4 .0451 .8089

5 .0355 .8444

6 .0283 .8727

7 .0228 .8955

8 .0185 .9140

9 .0151 .9291

10 .0124 .9415

11 .0101 .9516

12 .0083 .9599

13 .0069 .9668

14 .0057 .9725

15 .0047 .9772

16 .0039 .9811

17 .0032 .9843

18 .0027 .9869

19 .0022 .9892

20 .0018 .9910

I I
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this section we consider an approximation which uses a scaled version of the

Poisson distribution to approximate the negative binomial distribution.

The mean and variance of Z(t), tLe number of units demanded in time t,

are respectively

(19) E(Z(t)) ctO/(1-0).

(20) VAR(Z(t)) = ctO/(l-)-,

which gives VAR(Z'(t))/E(Z(t)) = (1-0) 1 . In certain circumsta.ces, one may have

knowledge of the variance to mean ratio of the demand which can then be used to

estimate 0 directly.

The approximation is based upon replacing the negative binomial distribution

of Z(t) with a scaled Poisson distribution. Let Y be a Poisson random variable

with parameter lt and let W be defined by W = kY for some k , o. We may think

of W as a random variable which assumes values 0, k, 2k, ... and whose distri-

bution depends upon the two parameters Pt and k.

Since

(21) E(W) = kilt

(22) VAR(W) = k 2tt

we have VAR(W)/E(W) = k. Thus, we set k = (I - 0) - to achieve the same variance

to mean ratio. Comparing the mean and variances of W and Z(t) we see that i = cO

(recall that c = -\/ln(1-0)).

Since the negative binomial distribution is defined on all non-negative

integers, we would like the approximation to be defined on the non-negative

integers as well. We have found the following procedure works well. Assume

that the scaled Poisson probabilities are shifted to k/2, 3k/2, 5k/2, .. so

that
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(23) P{W = (n+) k121 = e- in n=, 1, 2...
n.

We then assume that the cumulative distribution function is linear between nk/2

and (n+l)k/2. As an example, suppose 0 .75, t = 1, c = 2 (that is X = 2.77).

Then p = 1.5, k = 4 and

P{W = 2 = e = .2231

P) W = 6i = e flt = .3347

PiW = 10} = e-(lt)/12 = .2510

PtW = 141 = (e-tt( 3/3! = .1255

etc.

The comparison of the exact negative binomial probabilities and the scaled

Poisson approximation is presented in Table 3 for this case.

We now obtain an approximation to the LPG distribution by averaging the

scaled Poisson approximation of the negative binomial with the gamma distribution

of leadtime. That is,

(24) P{Z(i) = x} - f e-iT (l)x/k a T -le - 6T dT.
o (x/k)! 17(a)

But this integral is exactly a Poisson mixture with a gamma distribution

which is still another way that the negative binomial distribution can be derivcd

(see Baswell and Patil [2]). Hence, the approximation for the LPG distribution

is a scaled version of the negative binomial distribution. The approximation

therefore is:

(25) P{Z(T) =kxJ (cx+x-l)!
X! (a-1)i P

for x - 0, 1, 2,.

1.
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Table 3. Comparison of NegaLive Binomial and Scaled Poisson Approximations

(0=.75, t=l, c-2, p=2.77)

Negative Binomial Negative Binomial Scaled Poisson Scaled Poisson

x Probabilities Cumul. Probabilities Cumul. Probabilities Probabilities

0 .0625 .0625 .0744

1 .0938 .1563 .0744

2 .1055 .2618 .2231 .0744

3 .1055 .3673 .0837

4 .0989 .4662 .0837

5 .0890 .5552 .0837

6 .0779 .6331 .5578 .0837

7 .0667 .6998 .0628

8 .0563 .7561 .0628

9 .0469 .8030 .0628

10 .0387 .8417 .8088 .0628

11 .0312 .8729 .0314

12 .0257 .8986 .0314

13 .0208 .9134 .0314

14 .0167 .9361 .9343 .0314

15 .0134 .9495 .0118

16 .0106 .9601 .0118

17 .0085 .9685 .0118

18 .0667 .9753 .9814 .0118

19 .0053 .9806 .0035

20 .0040 .9846 .0035

21 .0033 .9879 .0035

22 .0026 .9905 .9955 .0035



Note that these probabilities are defined on 0, k, 2k, .... As with the

scaled Poisson we suggest shifting these probabilities to k12, 3k12, ... and

approximating the probability function by assuming the cumulative distribution

function is linear between these fractile points. We tested a variety of cases

and found the fit to be excellent, especially in the tails. In Table 4 we com-

pare the exact LPG probabilities for the parameter set considered in Table 2

with the scaled negative binomial approximation. Note that since U=.8, we have

k=5 and the approximate cumulative probabilities (labelled H(x) in the table)

are defined at the points 2.5, 7.5, 12.5, etc. The final column gives the ap-

proximate cumulative distribution function defined on the positive integers

obtained from a linear interpolation between the fractiles. Notice the close

agreement between the exact and approximate cumulative probabilities in the

tail of the distribution.

6. The First Four Moments of the LPG Distribution

Knowledge of the moments of a complex distribution can be utilized in a

variety of ways. The moments can be used to estimate the distribution para-

meters or to approximate the distribution itself. We derive the first four

central moments (moments about the mean) of the LPG distribution.

The distribution of Z(t), the number of units demanded in time t, is

negative binomial with parameters q-0, p=l- and nfct. From Kendall and Stuart

[7], the first four cumulants of the negative binomial distribution are given

by

K1 = nq/p, K2 = nq/p 2 , K3 - nq(l+q)/p 3 and K4 = nq(l+4q+q 2)/p 4 .

The first three cumulants are equal to the first three central moments, respec-

tively, while the fourth central moment, 4' is given by
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Table 4. The Scaled Negative Binomial Approximation to the LPG Distribution

(Parameters are the same as those of Table 2).

Exact Probabilities Approximate Probabilities
Approximate

x II(x) It(x) H(x) h(x) Cumulative

0 .5000 .5000 .1905 .1905

1 .1243 .6243 .1905 .3810

2 .P806 .7049 .6667 .1905 .5715

3 .0589 .7638 .1174 .6889

4 .0451 .8089 .0444 .7333

5 .0355 .8444 .0444 .7777

6 .0283 .8727 .0444 .8221

7 .0228 .8955 .8889 .0444 .8665

8 .0185 .9140 )296 .8961

9 .0151 .9291 .0148 .9109

10 .0124 .9415 .0148 .9257

11 .0101 .9516 .0148 .9405

12 .0083 .9599 .9630 .0148 .9553

13 .0069 .9668 .0099 .9652

14 .0057 .9725 .0049 .9701

15 .0047 .9775 .0049 .9750

16 .0039 .9811 .0049 .9799

17 .0032 .9843 .9877 .0049 .9848

18 .0027 .9869 .0033 .9881

19 .0022 .9892 .0016 .9897

20 .0018 .9910 .0016 .9913

1
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P4 = K4 + 3K2

Hence, the first four central moments (f.f.m.) of Z(t), say -it 1'i<4, are

(26) pi1 = ctO/(l-O)

(27) p2 = ctO/(1-0)
2

(28) i = ctO(l+0)/ (1-O)3

(29) p = ctO(l+40-+)2+3ctC)/(1-D)
4

In order to derive the f.f.m. of the LPG distribution, we use the following

relationships which can be found in Parzen [81, p. 55: Let X and Y be two

(dependent) random variables. Then

(30) E(Y) = E[E(YIX)]

(31) VAR(Y) = E[VAR(YIX)] + VAR[E(YIX)]

(32) p 3 (Y) = E[WI3 (YIX)] + p13 [E(YIX)]

(33) p 4 (Y) = E[U 4 (YIX) ] + 6E[VAR(YIX)] - VAR[E(YIX)]

+ P4 [E(YIX)]

where

(34) p 3 (Y) = E[(Y-E(Y))
3 ]

(35) p4 (Y) 
f E[[Y-E(Y) 1

In the context of our problem, we interpret Y as Z() and X as T. It

follows that

E(Z(t)) - EIE[Z(T)IT]]

- E[cTO/(-O)]
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Similarly,

VAR(Z(L)) = E[VAR(Z(I)llJ = VARIE(Z(T)It)]

= E[ciO/(1-O) 2 + VAR[c[O/(l-0)]

= cctO/(L;(1-0)) + (cO) a/(2 (1-0) 
2)

(37) = ccO/[(l-O)] {+co}.

Following the same kinds of arguments, one eventually obtains

(38) p 3 (Z([)) = CLO 13 W{(1+0) + 2c202 }

(39) p 4(Z(1)) = cO 14 {3 (1+40+0 ) + 2 cO(30x+l) + 6 c202 + c3 0 3(3u+6)}

[1(I-0)]

- i.
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